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Abstract The establishment of image correspondence through robust image reg-
istration is critical to many clinical tasks such as image fusion, organ atlas cre-
ation, and tumor growth monitoring, and is a very challenging problem. Since the
beginning of the recent deep learning renaissance, the medical imaging research
community has developed deep learning based approaches and achieved the state-
of-the-art in many applications, including image registration. The rapid adoption
of deep learning for image registration applications over the past few years neces-
sitates a comprehensive summary and outlook, which is the main scope of this
survey. This requires placing a focus on the different research areas as well as
highlighting challenges that practitioners face. This survey, therefore, outlines the
evolution of deep learning based medical image registration in the context of both
research challenges and relevant innovations in the past few years. Further, this
survey highlights future research directions to show how this field may be possibly
moved forward to the next level.

1 INTRODUCTION

Image registration is the process of transforming different image datasets into
one coordinate system with matched imaging contents, which has significant ap-
plications in medicine. Registration may be necessary when analyzing a pair of
images that were acquired from different viewpoints, at different times, or us-
ing different sensors/modalities [47, 146]. Until recently, image registration was
mostly performed manually by clinicians. However, many registration tasks can
be quite challenging and the quality of manual alignments are highly dependent
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Fig. 1 An overview of deep learning based medical image registration broken down by ap-
proach type. The popular research directions are written in bold.

upon the expertise of the user, which can be clinically disadvantageous. To address
the potential shortcomings of manual registration, automatic registration has been
developed. Although other methods for automatic image registration have been
extensively explored prior to (and during) the deep learning renaissance, deep
learning has changed the landscape of image registration research [3]. Ever since
the success of AlexNet in the ImageNet challenge of 2012 [2], deep learning has
allowed for state-of-the-art performance in many computer vision tasks including,
but not limited to: object detection [100], feature extraction [43], segmentation
[103], image classification [2], image denoising [135], and image reconstruction
[138].

Initially, deep learning was successfully used to augment the performance of
iterative, intensity based registration. Soon after this initial application, several
groups investigated the intuitive application of reinforcement learning to registra-
tion. Further, demand for faster registration methods later motivated the develop-
ment of deep learning based one-step transformation estimation techniques. The
challenges associated with procuring/generating ground truth data have recently
motivated many groups to develop unsupervised frameworks for one-step trans-
formation estimation. One of the hurdles associated with this framework is the
familiar challenge of image similarity quantification. Recent efforts that use infor-
mation theory based similarity metrics, segmentations of anatomical structures,
and generative adversarial network like frameworks to address this challenge have
shown promising results. As the trends visualized in Figures 1 and 2 suggest, this
field is moving very quickly to surmount the hurdles associated with deep learning
based medical image registration and several groups have already enjoyed signifi-
cant successes for their applications.

Therefore, the purpose of this article is to comprehensively survey the field
of deep learning based medical image registration, highlight common challenges
that practitioners face, and discuss future research directions that may address
these challenges. Prior to surveying deep learning based medical image registra-
tion works, background information pertaining to deep learning is discussed in
Section 2. The methods surveyed in this article were divided into the following
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Fig. 2 An overview of the number of deep learning based image registration works and deep
learning based medical imaging works. The red line represents the trend line for medical
imaging based approaches and the blue line represents the trend line for deep learning based
medical image registration approaches. The dotted line represents extrapolation.

three categories: Deep Iterative Registration, Supervised Transformation Estima-
tion, and Unsupervised Transformation Estimation. Following a discussion of the
methods that belong to each of the aforementioned categories in Sections 3, 4,
and 5 respectively, future research directions and current trends are discussed in
Section 6.

2 Deep Learning

Deep learning belongs to a larger class of machine learning that uses neural net-
works with a large number of layers to learn representations of data [38]. Based
on the way that networks are trained, most deep learning approaches fall into
one of two categories: supervised learning and unsupervised learning. Supervised
learning involves the designation of a desired neural network output, while unsu-
pervised learning involves drawing inferences from a set of data without the use of
any manually defined labels [38, 107]. Both supervised and unsupervised learning,
allow for the use of a variety of deep learning paradigms. In this section, several of
those approaches will be explored, including: convolutional neural networks, recur-
rent neural networks, reinforcement learning, and generative adversarial networks.
Note that there are many publicly available libraries that can be used to build the
networks described in the section, for example TensorFlow [1], MXNet [17], Keras
[22], Caffe [58], and PyTorch [95].
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2.1 Convolutional neural networks

Convolutional neural networks (CNNs) and their variants (such as the fully con-
volutional neural network (FCN) are among the most commonly used deep neu-
ral networks for computer vision and image processing and analysis applications.
CNNs are feed forward neural networks that are often used to analyze images and
perform tasks such as classification and object detection/recognition [67, 115].
They utilize a variation of the multilayer perceptron (MLP) and are famously
translation invariant due to their parameter weight sharing [38]. In each layer of
these networks, a number of convolutional filters “slide” across the feature maps
from the previous layer. The output is another set of feature maps that are con-
structed from the inner products of the kernel and the corresponding patches
associated with previous feature maps. The feature maps that result from these
convolutions are stacked and inputted into the next layer of the network. This
allows for hierarchical feature extraction of the image. Further, these operations
can be performed patch-wise, which is useful for a number of computer vision
tasks [49, 141]. Because the construction of a feature map from either an input
image/image pair or a feature map is linear, non-linear activation functions are
used to introduce non-linearities and enhance the expressivity of feature maps [38].

Convolutional filters and their activations are often combined with pooling
layers, either average or max, in a typical CNN to reduce the dimensionality of
feature maps [123, 69]. Batch normalization (BN) is commonly used after convo-
lutional layers as well [54] because of its ability to reduce internal covariate shift.
Furthermore, many modern neural networks make use of residual connections [122]
and depthwise separable convolutions [21]. These networks can be trained in an
end-to-end fashion using back propagation to iteratively update the parameters
that constitute the network [38, 69].

Additionally, randomly dropping connections in certain layers of a model dur-
ing training, a strategy known as dropout, allows for the implicit use of an ensemble
of models [118]. This is a popular regularization strategy that is frequently used
to prevent overfitting.

2.2 Recurrent Neural Networks

Although CNNs and their variants are typically used to analyze data that exists
in the spatial domain, recurrent neural networks (RNNs) that are composed of
several of the network components described in the above section can be used
to analyze time series data. Each element (e.g image) in the time series data is
mapped to a feature representation and the “current” representation is determined
by a combination of the previous representations and the “current” input datum.
RNNs can be “many-to-one” or “many-to-many” (i.e. the output of the RNN can
be a single datum or time series data). Further, a gated variant of RNNs- Long
Short-Term Memory Networks (LSTMs) [48]- can be used to model long term
dependencies by helping to prevent gradient vanishing/explosion.



Deep Learning in Medical Image Registration: A Survey 5

2.3 Reinforcement learning

Another popular deep learning strategy is reinforcement learning. Problems that
use reinforcement learning can essentially be cast as Markov decision processes
[75, 81, 98] associated with a tuple of a state, action, transition probability, reward,
and discount factor. When an agent is in a particular state, it uses a policy in order
to determine an action to take among a set of state-dependent actions [60]. Upon
performing the action that was selected by the policy, the agent transitions into
the next state with a given probability and receives a reward. The goal of the
agent is to maximize the total reward that it receives while performing a given
task. Because the rewards that the agent will receive are subject to stochastic
processes, the agent will seek to maximize the cumulative expected rewards, while
using the discount factor in order to prioritize longer term rewards. The primary
goal is to learn the optimal policy with respect to the expected future rewards
[27, 91, 131]. Instead of doing this directly, most reinforcement learning paradigms
learn the action-value function Q by using the Bellman equation [9]. The process
through which Q functions are approximated is referred to as Q-learning. These
approaches utilize value functions, action-value functions [131] that determine the
advantageous nature of a given state and state-action pair respectively[126, 131].
Further, an advantage function determines the advantageous nature of a given
state-action pair relative to the other pairs [126]. These approaches have been
applied to various video/board games and have often been able to demonstrate
superhuman performance [15, 40, 41, 112, 113, 124]. The performances of such
methods are often used as benchmarks that indicate the current state of deep
learning research.

2.4 Generative Adversarial Networks

A generative adversarial network (GAN) [39] is composed of two competing neural
networks: a generator and a discriminator. The generator maps data from one
domain to another. In their original implementation, they mapped a random noise
vector to an image domain associated with a particular dataset. The discriminator
is tasked with discerning between real data that originated from said domain and
data produced by the generator. The goal for training GANs is to converge to a
differentiable Nash Equilibrium [99], at which point generated data and real data
are indistinguishable [37].

When GANs are applied to medical image registration, they are commonly used
for regularization. The generator predicts a transformation and the discriminator
takes the resulting resampled images as its input. The discriminator is trained to
discern between aligned image pairs and resampled image pairs following the gen-
erator’s prediction. The generator is typically trained using a linear combination
of an adversarial loss function term (based on the discriminator’s predictions) and
a target loss function term (e.g euclidean distance from ground truth). For both
the generator and discriminator, a binary cross entropy (BCE) loss function is
commonly used.

Further discussion of deep learning based medical image analysis and vari-
ous deep learning research directions outlined above is outside of the scope of
this article. However, comprehensive review articles that survey the application of
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Table 1 Deep Iterative Registration Methods Overview

Ref Learning Transform Modality ROI Model
[32] Metric Deformable CT Thorax 9-layer CNN
[10] Metric Deformable CT Lung FCN
[114] Metric Deformable MR Brain 5-layer CNN
[132] Metric Deformable MR Brain 2-layer CAE
[19] Metric Deformable CT/MR Head 5-layer DNN
[108] Metric Rigid MR/US Abdominal 5-layer CNN
[42] Metric Rigid MR/US Prostate 14-layer CNN
[87] Metric Rigid MR/US Fetal Brain LSTM/STN
[64] RL Agent Deformable MR Prostate 8-layer CNN

[73] RL Agent Rigid CT/CBCT
Spine/

8-layer CNN
Cardiac

[88]
Multiple

Rigid X-ray/CT Spine Dilated FCN
RL Agents

[83] RL Agent Rigid MR/CT Spine
Dueling
Network

deep learning to medical image analysis [70, 74], reinforcement learning [60], and
the application of GANs to medical image analysis [61] are recommended to the
interested readers.

3 Deep Iterative Registration

Automatic intensity-based image registration requires both a metric that quanti-
fies the similarity between a moving image and a fixed image and an optimization
algorithm that updates the transformation parameters such that the similarity
between the images is maximized. Prior to the deep learning renaissance, several
manually crafted metrics were frequently used for such registration applications,
including: sum of squared differences (SSD), cross-correlation (CC), mutual in-
formation (MI) [84, 129], normalized cross correlation (NCC), and normalized
mutual information (NMI). Early applications of deep learning to medical image
registration are direct extensions of this classical framework [114, 132, 133]. Sev-
eral groups later used a reinforcement learning paradigm to iteratively estimate
a transformation [64, 73, 83, 88] because this application is more consistent with
how practitioners perform registration.

A description of both types of methods is given in Table 1. We will survey
earlier methods that used deep similarity based registration in Section 3.1 and
then some more recently developed methods that use deep reinforcement learning
based registration in Section 3.2.

3.1 Deep Similarity based Registration

In this section, methods that use deep learning to learn a similarity metric are
surveyed. This similarity metric is inserted into a classical intensity-based regis-
tration framework with a defined interpolation strategy, transformation model,
and optimization algorithm. A visualization of this overall framework is given in
Fig. 3. The solid lines represent data flows that are required during training and
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Fig. 3 A visualization of the registration pipeline for works that use deep learning to quantify
image similarity in an intensity-based registration framework.

testing, while the dashed lines represent data flows that are required only during
training. Note that this is the case for the remainder of the figures in this article
as well.

3.1.1 Overview of Works

Although manually crafted similarity metrics perform reasonably well in the uni-
modal registration case, deep learning has been used to learn superior metrics.
This section will first discuss approaches that use deep learning to augment the
performance of unimodal intensity based registration pipelines before multimodal
registration.

3.1.1.1 Unimodal Registration Wu et al. [132, 133] were the first to use deep learning
to obtain an application specific similarity metric for registration. They extracted
the features that are used for unimodal, deformable registration of 3D brain MR
volumes using a convolutional stacked autoencoder (CAE). They subsequently
performed the registration using gradient descent to optimize the NCC of the
two sets of features. This method outperformed diffeomorphic demons [127] and
HAMMER [110] based registration techniques.

Recently, Eppenhof et al. [32] estimated registration error for the deformable
registration of 3D thoracic CT scans (inhale-exhale) in an end-to-end capacity.
They used a 3D CNN to estimate the error map for inputted inhale-exhale pairs
of thoracic CT scans. Like the above method, only learned features were used in
this work.

Instead, Blendowski et al. [10] proposed the combined use of both CNN-based
descriptors and manually crafted MRF-based self-similarity descriptors for lung
CT registration. Although the manually crafted descriptors outperformed the
CNN-based descriptors, optimal performance was achieved using both sets of de-
scriptors. This indicates that, in the unimodal registration case, deep learning
may not outperform manually crafted methods. However, it can be used to obtain
complementary information.

3.1.1.2 Multimodal Registration The advantages of the application of deep learning
to intensity based registration are more obvious in the multimodal case, where
manually crafted similarity metrics have had very little success.
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Cheng et al. [18, 19] recently used a stacked denoising autoencoder to learn
a similarity metric that assesses the quality of the rigid alignment of CT and
MR images. They showed that their metric outperformed NMI and local cross
correlation (LCC) for their application.

In an effort to explicitly estimate image similarity in the multimodal case, Si-
monovsky et al. [114] used a CNN to learn the dissimilarity between aligned 3D T1
and T2 weighted brain MR volumes. Given this similarity metric, gradient descent
was used in order to iteratively update the parameters that define a deformation
field. This method was able to outperform MI based registration and set the stage
for deep intensity based multimodal registration.

Additionally, Sedghi et al. [108] performed the rigid registration of 3D US/MR
(modalities with an even greater appearance difference than MR/CT) abdomi-
nal scans by using a 5-layer neural network to learn a similarity metric that is
then optimized by Powells method. This approach also outperformed MI based
registration.

Haskins et al. [42] learned a similarity metric for multimodal rigid registration
of MR and transrectal US (TRUS) volumes by using a CNN to predict target
registration error (TRE). Instead of using a traditional optimizer like the above
methods, they used an evolutionary algorithm to explore the solution space prior
to using a traditional optimization algorithm because of the learned metric’s lack
of convexity. This registration framework outperformed MIND [44] and MI based
registration.

In stark contrast to the above methods, Wright et al. [87] used LSTM spatial
co-transformer networks to iteratively register MR and US volumes group-wise.
The recurrent spatial co-transformation occurred in three steps: image warping,
residual parameter prediction, parameter composition. They demonstrated that
their method is more capable of quantifying image similarity than a previous
multimodal image similarity quantification method that uses self-similarity context
descriptors [45].

3.1.2 Discussion and Assessment

Recent works have confirmed the ability of neural networks to assess image simi-
larity in multimodal medical image registration. The results achieved by the ap-
proaches described in this section demonstrate that deep learning can be suc-
cessfully applied to challenging registration tasks. However, the findings from [10]
suggest that learned image similarity metrics may be best suited to complement
existing similarity metrics in the unimodal case. Further, it is difficult to use these
iterative techniques for real time registration.

3.2 Reinforcement Learning based Registration

In this section, methods that use reinforcement learning for their registration ap-
plications are surveyed. Here, a trained agent is used to perform the registration as
opposed to a pre-defined optimization algorithm. A visualization of this framework
is given in Fig. 4. Reinforcement learning based registration typically involves a
rigid transformation model. However, it is possible to use a deformable transfor-
mation model.
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Fig. 4 A visualization of the registration pipeline for works that use deep reinforcement
learning to implicitly quantify image similarity for image registration. Here, an agent learns
to map states to actions based on rewards that it receives from the environment.

Liao et al. [73] were the first to use reinforcment learning based registration
to perform the rigid registration of cardiac and abdominal 3D CT images and
cone-beam CT (CBCT) images. They used a greedy supervised approach for end-
to-end training with an attention-driven hierarchical strategy. Their method out-
performed MI based registration and semantic registration using probability maps.

Shortly after, Kai et al. [83] used a reinforcement learning approach to perform
the rigid registration of MR/CT chest volumes. This approach is derived from
Q-learning and leverages contextual information to determine the depth of the
projected images. The network used in this method is derived from the dueling
network architecture [131]. Notably, this work also differentiates between terminal
and non-terminal rewards. This method outperforms registration methods that
are based on iterative closest points (ICP), landmarks, Hausdorff distance, Deep
Q Networks, and the Dueling Network [131].

Instead of training a single agent like the above methods, Miao et al. [88]
used a multi-agent system in a reinforcement learning paradigm to rigidly register
X-Ray and CT images of the spine. They used an auto-attention mechanism to
observe multiple regions and demonstrate the efficacy of a multi-agent system.
They were able to significantly outperform registration approaches that used a
state-of-the-art similarity metric given by [24].

As opposed to the above rigid registration based works, Krebs et al. [64] used
a reinforcement learning based approach to perform the deformable registration
of 2D and 3D prostate MR volumes. They used a low resolution deformation
model for the registration and fuzzy action control to influence the stochastic
action selection. The low resolution deformation model is necessary to restrict the
dimensionality of the action space. This approach outperformed Elastix [62] and
LCC-Demons [80] based registration techniques.

The use of reinforcement learning is intuitive for medical image registration
applications. One of the principle challenges for reinforcement learning based reg-
istration is the ability to handle high resolution deformation fields. There are no
such challenges for rigid registration. Because of the intuitive nature and recency
of these methods, we expect that such approaches will receive more attention from
the research community in the next few years.
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Fig. 5 A visualization of supervised single step registration.

Table 2 Supervised Transformation Estimation Methods Overview

Ref Supervision Transform Modality ROI Model
[137] Real Transforms Deformable MR Brain FCN
[13] Real Transforms Deformable MR Brain 9-layer CNN
[82] Real Transforms Deformable MR Abdominal CNN
[102] Real Transforms Deformable MR Cardiac SVF-Net

[117]
Synthetic

Deformable CT Chest RegNet
Transforms

[31]
Synthetic

Deformable CT Lung U-Net
Transforms

[125]
Synthetic

Deformable MR
Brain/

FlowNet
Transforms Cardiac

[56]
Synthetic

Deformable MR Brain GoogleNet
Transforms

[121]
Synthetic

Deformable CT/US Liver DVFNet
Transforms

[136]
Real + Synthetic

Deformable MR Brain FCN
Transforms

[116]
Synthetic

Rigid MR Brain
6-layer CNN

Transforms 10-layer FCN

[106]
Synthetic

Rigid MR Brain
11-layer CNN

Transforms ResNet-18

[143]
Synthetic

Rigid X-ray Bone
17-layer CNN

Transforms PDA Module

[90]
Synthetic

Rigid
X-ray/

Bone 6-layer CNN
Transforms DDR

[16]
Synthetic

Rigid MR Brain AIRNet
Transforms

[52] Segmentations Deformable MR/US Prostate 30-layer FCN

[46]
Segmentations +

Deformable MR/US Prostate
U-Net

Similarity Metric GAN

[50]
Segmentations +

Deformable MR/US Prostate GAN
Adversarial Loss

[34]
Real Transforms +

Deformable MR Brain U-Net
Similarity Metric

[134]
Synthetic

Rigid MR/US Prostate GANTransforms +
Adversarial Loss
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4 Supervised Transformation Estimation

Despite the early success of the previously described approaches, the transforma-
tion estimation in these methods is iterative, which can lead to slow registration.
This is especially true in the deformable registration case where the solution space
is high dimensional [70]. This motivated the development of networks that could
estimate the transformation that corresponds to optimal similarity in one step.
However, fully supervised transformation estimation (the exclusive use of ground
truth data to define the loss function) has several challenges that are highlighted
in this section.

A visualization of supervised transformation estimation is given in Fig. 5 and
a description of notable works is given in Table 2. This section first discusses
methods that use fully supervised approaches in Section 4.1 and then discusses
methods that use dual/weakly supervised approaches in Section 4.2.

4.1 Fully Supervised Transformation Estimation

In this section, methods that used full supervision for single-step registration are
surveyed. Using a neural network to perform registration as opposed to an iterative
optimizer significantly speeds up the registration process.

4.1.1 Overview of works

Because the methods discussed in this section use a neural network to estimate
transformation parameters directly, the use of a deformable transformation model
does not introduce additional computational constraints. This is advantageous
because deformable transformation models are generally superior to rigid trans-
formation models [96]. This section will first discuss approaches that use a rigid
transformation model and then discuss approaches that use a deformable trans-
formation model.

4.1.1.1 Rigid Registration Miao et al. [89, 90] were the first to use deep learning to
predict rigid transformation parameters. They used a CNN to predict the transfor-
mation matrix associated with the rigid registration of 2D/3D X-ray attenuation
maps and 2D X-ray images. Hierarchical regression is proposed in which the 6
transformation parameters are partitioned into 3 groups. Ground truth data was
synthesized in this approach by transforming aligned data. This is the case for the
next three approaches that are described as well. This approach outperformed MI,
CC, and gradient correlation based iterative registration approaches.

Recently, Chee et al. [16] used a CNN to predict the transformation parameters
used to rigidly register 3D brain MR volumes. In their framework, affine image
registration network (AIRNet), the MSE between the predicted and ground truth
affine transforms is used to train the network. They are able to outperform iterative
MI based registration for both the unimodal and multimodal cases.

That same year, Salehi et al. [106] used a deep residual regression network,
a correction network, and a bivariant geodesic distance based loss function to
rigidly register T1 and T2 weighted 3D fetal brain MRs for atlas construction.
The use of the residual network to initially register the image volumes prior to the
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forward pass through the correction network allowed for an enhancement of the
capture range of the registration. This approach was evaluated for both slice-to-
volume registration and volume-to-volume registration. They validated the efficacy
of their geodesic loss term and outperformed NCC registration.

Additionally, Zheng et al. [143] proposed the integration of a pairwise domain
adaptation module (PDA) into a pre-trained CNN that performs the rigid reg-
istration of pre-operative 3D X-Ray images and intraoperative 2D X-ray images
using a limited amount of training data. Domain adaptation was used to address
the discrepancy between synthetic data that was used to train the deep model and
real data.

Sloan et al. [116] used a CNN is used to regress the rigid transformation pa-
rameters for the registration of T1 and T2 weighted brain MRs. Both unimodal
and multimodal registration were investigated in this work. The parameters that
constitute the convolutional layers that were used to extract low-level features in
each image were only shared in the unimodal case. In the multimodal case, these
parameters were learned separately. This approach also outperformed MI based
image registration.

4.1.1.2 Deformable Registration Unike the previous section, methods that use both
real and synthesized ground truth labels will be discussed. Methods that use clin-
ical/publicly available ground truth labels for training are discussed first. This
ordering is reflective of the fact that simulating realistic deformable transforma-
tions is more difficult than simulating realistic rigid transformations.

First, Yang et al. [137] predicted the deformation field with an FCN that is used
to register 2D/3D intersubject brain MR volumes in a single step. A U-net like
architecture [103] was used in this approach. Further, they used large diffeomorphic
metric mapping to provide a basis, used the initial momentum values of the pixels
of the image volumes as the network input, and evolved these values to obtain the
predicted deformation field. This method outperformed semi-coupled dictionary
learning based registration [11].

The following year, Rohe et al. [102] also used a U-net [103] inspired network
to estimate the deformation field used to register 3D cardiac MR volumes. Mesh
segmentations are used to compute the reference transformation for a given image
pair and SSD between the prediction and ground truth is used as the loss function.
This method outperformed LCC Demons based registration [80].

That same year, Cao et al. [13] used a CNN to map input image patches of a
pair of 3D brain MR volumes to their respective displacement vector. The totality
of these displacement vectors for a given image constitutes the deformation field
that is used to perform the registration. Additionally, they used the similarity
between inputted image patches to guide the learning process. Further, they used
equalized active-points guided sampling strategy that makes it so that patches
with higher gradient magnitudes and displacement values are more likely to be
sampled for training. This method outperforms SyN [5] and Demons [127] based
registration methods.

Recently, Jun et al. [82] used a CNN to perform the deformable registration
of abdominal MR images to compensate for the deformation that is caused by
respiration. This approach achieved registration results that are superior to those
obtained using non-motion corrected registrations and local affine registration.
Recently, unlike many of the other approaches discussed in this paper, Yang et al.
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[136] quantified the uncertainty associated with the deformable registration of 3D
T1 and T2 weighted brain MRs using a low-rank Hessian approximation of the
variational gaussian distribution of the transformation parameters. This method
was evaulated on both real and synthetic data.

Just as deep learning practitioners use random transformations to enhance
the diversity of their dataset, Sokooti et al. [117] used random DVFs to augment
their dataset. They used a multi-scale CNN to predict a deformation field. This
deformation is used to perform intra-subject registration of 3D chest CT images.
This method used late fusion as opposed to early fusion, in which the patches
are concatenated and used as the input to the network. The performance of their
method is competitive with B-Spline based registration [117].

Such approaches have notable, but also limited ability to enhance the size
and diversity of datasets. These limitations motivated the development of more
sophisticated ground truth generation. The rest of the approaches described in
this section use simulated ground truth data for their applications.

For example, Eppenhof et al. [31] used a 3D CNN to perform the deformable
registration of inhale-exhale 3D lung CT image volumes. A series of multi-scale,
random transformations of aligned image pairs eliminate the need for manually
annotated ground truth data while also maintaining realistic image appearance.
Further, as is the case with other methods that generate ground truth data, the
CNN can be trained using relatively few medical images in a supervised capacity.

Unlike the above works, Uzunova et al. [125] generated ground truth data using
statistical appearance models (SAMs). They used a CNN to estimate the defor-
mation field for the registration of 2D brain MRs and 2D cardiac MRs, and adapt
FlowNet [29] for their application. They demonstrated that training FlowNet us-
ing SAM generated ground truth data resulted in superior performance to CNNs
trained using either randomly generated ground truth data or ground truth data
obtained using the registration method described in [30].

Unlike the other methods in this section that use random transformations
or manually crafted methods to generate ground truth data, Ito et al. [56] used
a CNN to learn plausible deformations for ground truth data generation. They
evaluated their approach on the 3D brain MR volumes in the ADNI dataset and
outperformed the MI based approach proposed in [53].

4.1.2 Discussion and Assessment

Supervised transformation estimation has allowed for real time, robust registration
across applications. However, such works are not without their limitations. Firstly,
the quality of the registrations using this framework is dependent on the quality
of the ground truth registrations. The quality of these labels is, of course, depen-
dent upon the expertise of the practitioner. Furthermore, these labels are fairly
difficult to obtain because there are relatively few individuals with the expertise
necessary to perform such registrations. Transformations of training data and the
generation of synthetic ground truth data can address such limitations. However,
it is important to ensure that simulated data is sufficiently similar to clinical data.
These challenges motivated the development of partially supervised/unsupervised
approaches, which will be discussed next.
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Fig. 6 A visualization of deep single step registration where the agent is trained using dual
supervision. The loss function is determined using both a metric that quantifies image similarity
and ground truth data.

4.2 Dual/Weakly Supervised Transformation Estimation

Dual supervision refers to the use of both ground truth data and some metric that
quantifies image similarity to train a model. On the other hand, weak supervision
refers to using the overlap of segmentations of corresponding anatomical structures
to design the loss function. This section will discuss the contributions of such
works in Section 4.2.1 and then discuss the overall state of this research direction
in Section 4.2.2.

4.2.1 Overview of works

First, this section will discuss methods that use dual supervised and then will
discuss methods that use weak supervision. Recently, Fan et al. [34] used hierar-
chical, dual-supervised learning to predicted the deformation field for 3D brain
MR registration. They amend the traditional U-Net architecture [103] by using
“gap-filling” (i.e., inserting convolutional layers after the U-type ends or the archi-
tecture) and coarse-to-fine guidance. This approach leveraged both the similarity
between the predicted and ground truth transformations, and the similarity be-
tween the warped and fixed images to train the network. The architecture detailed
in this method outperformed the traditional U-Net architecture and the dual su-
pervision strategy is verified by ablating the image similarity loss function term.
A visualization of dual supervised transformation estimation is given in Fig. 6.

On the other hand, Yan et al. [134] used a GAN [39] framework to perform the
rigid registration of 3D MR and TRUS volumes. In this work, the generator was
trained to estimate a rigid transformation. While, the discriminator was trained to
discern between images that were aligned using the ground truth transformations
and images that were aligned using the predicted transformations. Both Euclidean
distance to ground truth and an adversarial loss term are used to construct the
loss function in this method, which outperformed both MIND based registration
and MI based registration. Note that the adversarial supervision strategy that
was used in this approach is similar to the ones that are used in a number of
unsupervised works that will be described in the next section. A visualization of
adversarial transformation estimation is given in Fig. 7.
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Fig. 7 A visualization of an adversarial image registration framework. Here, the generator is
trained using output from the discriminator. The discriminator takes the form of a learned
metric here.

Unlike the above methods that used dual supervision, Hu et al. [51, 52] recently
used label similarity to train their network to perform MR-TRUS registration. In
their initial work, they used two neural networks: local-net and global-net to es-
timate the global affine transformation with 12 degrees of freedom and the local
dense deformation field respectively [51]. The local-net uses the concatenation of
the transformation of the moving image given by the global-net and the fixed im-
age as its input. However, in their later work [52], they combine these networks
in an end-to-end framework. This method outperformed NMI based and NCC
based registration. A visualization of weakly supervised transformation estima-
tion is given in Fig. 8. In another work, Hu et al. [50] simultaneously maximized
label similarity and minimized an adversarial loss term to predict the deformation
for MR-TRUS registration. This regularization term forces the predicted trans-
formation to result in the generation of a realistic image. Using the adversarial
loss as a regularization term is likely to successfully force the transformation to
be realistic given proper hyper parameter selection. The performance of this reg-
istration framework was inferior to the performance of their previous registration
framework described above. However, they showed that adversarial regularization
is superior to standard bending energy based regularization. Similar to the above
method, Hering et al. [46] built upon the progress made with respect to both
dual and weak supervision by introducing a label and similarity metric based loss
function for cardiac motion tracking via the deformable registration of 2D cine-
MR images. Both segmentation overlap and edge based normalized gradient fields
distance were used to construct the loss function in this approach. Their method
outperformed a multilevel registration approach similar to the one proposed in
[104].

4.2.2 Discussion and Assessment

Direct transformation estimation marked a major breakthrough for deep learning
based image registration. With full supervision, promising results have been ob-
tained. However, at the same time, those techniques require a large amount of de-
tailed annotated images for training. Partially/weakly supervised transformation
estimation methods alleviated the limitations associated with the trustworthiness
and expense of ground truth labels. However, they still require manually annotated
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Fig. 8 A visualization of deep single step registration where the agent is trained using label
similarity (i.e weak supervision). Manually annotated data (segmentations) are used to define
the loss function used to train the network.

data (e.g ground truth and/or segmentations). On the other hand, weak supervi-
sion allows for similarity quantification in the multimodal case. Further, partial
supervision allows for the aggregation of methods that can be used to assess the
quality of a predicted registration. As a result, there is growing interest in these
research areas.

5 Unsupervised Transformation Estimation

Despite the success of the methods described in the previous sections, the diffi-
cult nature of the acquisition of reliable ground truth remains a significant hin-
drance. This has motivated a number of different groups to explore unsupervised
approaches. One key innovation that has been useful to these works is the spa-
tial transformer network (STN) [57]. Several methods use an STN to perform
the deformations associated with their registration applications. This section dis-
cusses unsupervised methods that utilize image similarity metrics (Section 5.1)
and feature representations of image data (Section 5.2) to train their networks. A
description of notable works is given in Table 3.

5.1 Similarity Metric based Unsupervised Transformation Estimation

5.1.1 Standard Methods

This section begins by discussing approaches that use a common similarity met-
ric with common regularization strategies to define their loss functions. Later in
the section, approaches that use more complex similarity metric based strategies
are discussed. A visualization of standard similarity metric based transformation
estimation is given in Fig. 9.
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Table 3 Unsupervised Transformation Estimation Methods Overview

Ref Loss Function Transform Modality ROI Model

[59] SSD Deformable CT Chest
Multi-scale
CNN

[36] UB SSD Deformable MR Brain
19-layer
FCN

[142] MSD Deformable MR Brain ICNet

[111] MSE Deformable SEM Neurons
11-layer
CNN

[23] MSE Deformable MR Brain VoxelMorph

[109] MSE Deformable MR
Cardiac 8-layer
Cine FCNet

[68] CC Deformable MR Brain FAIM

[72] NCC Deformable MR Brain
8-layer
FCN

[12] NCC Deformable CT, MR Pelvis U-Net

[26] NCC Deformable MR
Cardiac

DIRNet
Cine

[25] NCC Deformable MR
Cardiac

DLIR
Cine

[35] NCC Deformable X-ray, MR
Bone

U-Net
Cardiac

STN
Cine

[120]
L2 Distance +

Deformable MR, US Brain FCN
Image Gradient

[94] Predicted TRE Deformable CT Head/Neck FCN
[33] BCE Deformable MR Brain GAN

[85]
NMI + SSIM

Deformable
MR, FA/ Cardiac

GAN
+ VGG Outputs Color fundus Retinal

[86]
NMI + SSIM +

Deformable X-ray Bone GANVGG Outputs +
BCE

[140] MSE AE Output Deformable ssEM Neurons
CAE
STN

[133]
MSE Stacked

Deformable MR Brain
Stacked

AE Outputs AE

[132]
NCC of

Deformable MR Brain
Stacked

ISA Outputs ISA

[65] Log Likelihood Deformable MR Brain
cVAE
STN

[78]
SSD MIND +

Deformable CT, MR
Chest FCN

PCANet Outputs Brain PCANet

[63]
SSD VGG

Rigid MR Brain
CNN

Outputs MLP

Inspired to overcome the difficulty associated with obtaining ground truth data,
Li et al. [71, 72] trained an FCN to perform deformable intersubject registration
of 3D brain MR volumes using ”self-supervision.” NCC between the warped and
fixed images and several common regularization terms (e.g smoothing constraints)
constitute the loss function in this method. Although many manually defined sim-
ilarity metrics fail in the multimodal case (with the occasional exception of MI),
they are often suitable for the unimodal case. The method detailed in this work
outperforms ANTs based registration and the deep learning methods proposed by
Sokooti et al. [117] (discussed previously) and Yoo et al. [140] (discussed in the
next section).
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Fig. 9 A visualization of deep single step registration where the network is trained using a
metric that quantifies image similarity. Therefore, the approach is unsupervised.

Further, de Vos et al. [26] used NCC to train an FCN to perform the deformable
registration of 4D cardiac cine MR volumes. A DVF is used in this method to
deform the moving volume. Their method outperforms Elastix based registration
[62].

In another work, de Vos et al. [25] use a multistage, multiscale approach to
perform unimodal registration on several datasets. NCC and a bending-energy reg-
ularization term are used to train the networks that predict an affine transforma-
tion and subsequent coarse-to-fine deformations using a B-Spline transformation
model. In addition to validating their multi-stage approach, they show that their
method outperforms simple elastix based registration with and without bending
energy.

The unsupervised deformable registration framework used by Ghosal et al.
[36] minimizes the upper bound of the SSD (UB SSD) between the warped and
fixed 3D brain MR images. The design of their network was inspired by the SKIP
architecture [79]. This method outperforms log-demons based registration.

Shu et al. [111] used a coarse-to-fine, unsupervised deformable registration
approach to register images of neurons that are acquired using a scanning electron
microscope (SEM). The mean squared error (MSE) between the warped and fixed
volumes is used as the loss function here. Their approach is competitive with and
faster than the sift flow framework [76].

Sheikhjafari et al. [109] used learned latent representations to perform the
deformable registration of 2D cardiac cine MR volumes. Deformation fields are thus
obtained by embedding. This latent representation is used as the input to a network
that is composed of 8 fully connected layers to obtain the transformation. The sum
of absolute errors (SAE) is used as the loss function. This method outperforms a
moving mesh correspondence based method described in [97].

Stergios et al. [119] used a CNN to both linearly and locally register inhale-
exhale pairs of lung MR volumes. Therefore, both the affine transformation and
the deformation are jointly estimated. The loss function is composed of an MSE
term and regularization terms. Their method outperforms several state-of-the-
art methods that do not utilized ground truth data, including Demons [80], SyN
[5], and a deep learning based method that uses an MSE loss term. Further, the
inclusion of the regularization terms is validated by an ablation study.
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The successes of deep similarity metric based unsupervised registration moti-
vated Neylon et al. [94] to use a neural network to learn the relationship between
image similarity metric values and TRE when registering CT image volumes. This
is done in order to robustly assess registration performance. The network was able
to achieve subvoxel accuracy in 95% of cases. Similarly inspired, Balakrishnan
et al. [7, 8] proposed a general framework for unsupervised image registration,
which can be either unimodal or multimodal theoretically. The neural networks
are trained using a selected, manually-defined image similarity metric (e.g. NCC,
NMI, etc.).

In a follow-up paper, Dalca et al. [23] casted deformation prediction as vari-
ational inference. Diffeomorphic integration is combined with a transformer layer
to obtain a velocity field. Squaring and rescaling layers are used to integrate the
velocity field to obtain the predicted deformation. MSE is used as the similar-
ity metric that, along with a regularization term, define the loss function. Their
method outperforms ANTs based registration [6] and the deep learning based
method described in [7].

Shortly after, Kuang et al. [68] used a CNN and STN inspired framework to
perform the deformable registration of T1-weighted brain MR volumes. The loss
function is composed of a NCC term and a regularization term. This method uses
Inception modules, a low capacity model, and residual connections instead of skip
connections. They compare their method with VoxelMorph (the method proposed
by Balakrishnan et al., described above) [8] and uTIlzReg GeoShoot [128] using
the LBPA40 and Mindboggle 101 datasets and demonstrate superior performance
with respect to both.

Building upon the progress made by the previously described metric-based ap-
proaches, Ferrante et al. [35] used a transfer learning based approach to perform
unimodal registration of both X-ray and cardiac cine images. In this work, the
network is trained on data from a source domain using NCC as the primary loss
function term and tested in a target domain. They used a U-net like architec-
ture [103] and an STN [57] to perform the feature extraction and transformation
estimation respectively. They demonstrated that transfer learning using either do-
main as the source or the target domain produces effective results. This method
outperformed the Elastix registration technique [62].

Although applying similarity metric based approaches to the multimodal case
is difficult, Sun et al. [120] proposed an unsupervised method for 3D MR/US
brain registration that uses a 3D CNN that consists of a feature extractor and a
deformation field generator. This network is trained using a similarity metric that
incorporates both pixel intensity and gradient information. Further, both image
intensity and gradient information are used as inputs into the CNN.

5.1.2 Extensions

Cao et al. [12] also applied similarity metric based training to the multimodal
case. Specifically, they used intra-modality image similarity to supervise the mul-
timodal deformable registration of 3D pelvic CT/MR volumes. The NCC between
the moving image that is warped using the ground truth transformation and the
moving image that is warped using the predicted transformation is used as the loss
function. This work utilizes ”dual” supervision (i.e. the intra-modality supervision
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previously described is used for both the CT and the MR images). This is not to
be confused with the dual supervision strategies described earlier.

Inspired by the limiting nature of the asymmetric transformations that typical
unsupervised methods estimate, Zhang et al. [142] used their network Inverse-
Consistent Deep Network (ICNet)-to learn the symmetric diffeomorphic transfor-
mations for each of the brain MR volumes that are aligned into the same space.
Different from other works that use standard regularization strategies, this work
introduces an inverse-consistent regularization term and an anti-folding regular-
ization term to ensure that a highly weighted smoothness constraint does not
result in folding. Finally, the MSD between the two images allows this network
to be trained in an unsupervised manner. This method outperformed SyN based
registration [5], Demons based registration [80], and several deep learning based
approaches.

The next three approaches described in this section used a GAN for their ap-
plications. Unlike the GAN-based approaches described previously, these methods
use neither ground truth data nor manually crafted segmentations. Mahapatra et
al. [85] used a GAN to implicitly learn the density function that represents the
range of plausible deformations of cardiac cine images and multimodal retinal im-
ages (retinal colour fundus images and fluorescein angiography (FA) images). In
addition to NMI, structual similarity index measure (SSIM), and a feature percep-
tual loss term (determined by the SSD between VGG outputs), the loss function
is comprised of conditional and cyclic constraints, which are based on recent ad-
vances involving the implementation of adversarial frameworks. Their approach
outperforms Elastix based registration and the method proposed by de Vos et al.
[26].

Further, Fan et al. [33] used a GAN to perform unsupervised deformable image
registration of 3D brain MR volumes. Unlike most other unsupervised works that
use a manually crafted similarity metric to determine the loss function and unlike
the previous approach that used a GAN to ensure that the predicted deformation is
realistic, this approach uses a discriminator to assess the quality of the alignment.
This approach outperforms Diffeomorphic Demons and SyN registration on every
dataset except for MGH10. Further, the use of the discriminator for supervision
of the registration network is superior to the use of ground truth data, SSD, and
CC on all datasets.

Different from the hitherto previously described works (not just the GAN based
ones), Mahapatra et al. [86] proposed simultaneous segmentation and registration
of chest X-rays using a GAN framework. The network takes 3 inputs: reference
image, floating image, and the segmentation mask of the reference image and
outputs the segmentation mask of the transformed image, and the deformation
field. Three discriminators are used to assess the quality of the generated outputs
(deformation field, warped image, and segmentation) using cycle consistency and a
dice metric. The generator is additionally trained using NMI, SSIM, and a feature
perceptual loss term.

Finally, instead of predicting a deformation field given a fixed parameterization
as the other methods in this section do, Jiang et al. [59] used a CNN to learn an
optimal parameterization of an image deformation using a multi-grid B-Spline
method and L1-norm regularization. They use this approach to parameterize the
deformable registration of 4D CT thoracic image volumes. Here, SSD is used as
the similarity metric and L-BFGS-B is used as the optimizer. The convergence rate
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using the parameterized deformation model obtained using the proposed method
is faster than the one obtained using a traditional L1-norm regularized multi-grid
parameterization.

5.1.3 Discussion and Assessment

Image similarity based unsupervised image registration has received a lot of atten-
tion from the research community recently because it bypasses the need for expert
labels of any kind. This means that the performance of the model will not depend
on the expertise of the practitioner. Further, extensions of the original similarity
metric based method that introduce more sophisticated similarity metrics (e.g the
discriminator of a GAN) and/or regularization strategies have yielded promising
results. However, it is still difficult to quantify image similarity for multimodal
registration applications. As a result, the scope of unsupervised, image similar-
ity based works is largely confined to the unimodal case. Given that multimodal
registration is often needed in many clinical applications, we expect to see more
papers in the near future that will tackle this challenging problem.

5.2 Feature based Unsupervised Transformation Estimation

In this section, methods that use learned feature representations to train neural
networks are surveyed. Like the methods surveyed in the previous section, the
methods surveyed in this section do not require ground truth data. In this section,
approaches that create unimodal registration pipelines are presented first. Then, an
approach that tackles multimodal image registration is discussed. A visualization
of featured based transformation estimation is given in Fig. 10.

5.2.1 Unimodal Registration

Yoo et al. [140] used an STN to register serial-section electron microscopy im-
ages (ssEMs).. An autoencoder is trained to reconstruct fixed images and the L2
distance between reconstructed fixed images and corresponding warped moving
images is used along with several regularization terms to construct the loss func-
tion. This approach outperforms the bUnwarpJ registration technique [4] and the
Elastic registration technique [105].

In the same year, Liu et al. [78] proposed a tensor based MIND method using
a principle component analysis based network (PCANet) [14] for both unimodal
and multimodal registration. Both inhale-exhale pairs of thoracic CT volumes and
multimodal pairs of brain MR images are used for experimental validation of this
approach. MI and residual complexity (RC) based [92], and the original MIND-
based [44] registration techniques were outperformed by the proposed method.

Krebs et al. [65, 66] performed the registration of 2D brain and cardiac MRs
and bypassed the need for spatial regularization using a stochastic latent space
learning approach. A conditional variational autoencoder [28] is used to ensure that
the parameter space follows a prescribed probability distribution. The negative log
liklihood of the fixed image given the latent representation and the warped volume
and KL divergence of the latent distribution from a prior distribution are used to
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Fig. 10 A visualization of feature based unsupervised image registration. Here, a feature
extractor is used to map inputted images to a feature space to facilitate the prediction of
transformation parameters.

define the loss function. This method outperforms the Demons technique [80] and
the deep learning method described in [7].

5.2.2 Multimodal Registration

Unlike all of the other methods described in this section, Kori et al. perform fea-
ture extraction and affine transformation parameter regression for the multimodal
registration of 2-D T1 and T2 weighted brain MRs in an unsupervised capacity
using pre-trained networks [63]. The images are binarized and then the Dice score
between the moving and the fixed images is used as the cost function. As the
appearance difference between these two modalities is not significant, the use of
these pre-trained models can be reasonably effective.

5.2.3 Discussion and Assessment

Performing multimodal image registration in an unsupervised capacity is signifi-
cantly more difficult than performing unimodal image registration because of the
difficulty associated with using manually crafted similarity metrics to quantify the
similarity between the two images, and generally using the unsupervised techniques
described above to establish/detect voxel-to-voxel correspondence. The use of un-
supervised learning to learn feature representations to determine an optimal trans-
formation has generated significant interest from the research community recently.
Along with the previously discussed unsupervised image registration method, we
expect feature based unsupervised registration to continue to generate significant
interest from the research community. Further, extension to the multimodal case
(especially for applications that use image with significant appearance differences)
is likely to be a prominent research focus in the next few years.

6 Research Trends and Future Directions

In this section, we summarize the current research trends and future directions
of deep learning in medical image registration. As we can see from Fig. 2, some
research trends have emerged. First, deep learning based medical image regis-
tration seems to be following the observed trend for the general application of
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deep learning to medical image analysis. Second, unsupervised transformation es-
timation methods have been garnering more attention recently from the research
community. Further, deep learning based methods consistently outperform tradi-
tional optimization based techniques [93]. Based on the observed research trends,
we speculate that the following research directions will receive more attention in
the research community.

6.1 Deep Adversarial Image Registration

We further speculate that GANs will be used more frequently in deep learning
based image registration in the next few years. As described above, GANs can
serve several different purposes in deep learning based medical image registration:
ensuring that predicted transformations are realistic, using a discriminator as a
learned similarity metric, and using a GAN to perform image translation to trans-
form a multimodal registration problem into a unimodal registration problem.

Unconstrained deformation field prediction can result in warped moving images
with unrealistic organ appearances. A common approach to add the L2 norm of the
predicted deformation field to the loss function. However, Hu et al. [50] explored
the use of a GAN like framework to produce realistic deformations. Constraining
the deformation prediction using a discriminator results in superior performance
relative to the use of L2 norm regularization.

Further, GANs have been used in several works to obtain a learned similar-
ity metric. Several recent works [33, 134] use a discriminator to discern between
aligned and misaligned image pairs. This is particularly useful in the multimodal
registration case where manually crafted similarity metrics famously have little
success. Because this allows the generator to be trained without ground truth
transformations, further research into using discriminators as similarity metric
will likely allow for unsupervised multimodal registration.

Lastly, GANs can be used to map medical images in a source domain (e.g
MR) to a target domain (e.g CT) [20, 55, 77, 139], regardless of whether or not
paired training data is available [145]. This would be advantageous because many
unimodal unsupervised registration methods use similarity metrics, which often fail
in the multimodal case, to define their loss functions. If image translation could be
performed as a pre-processing step, then commonly used similarity metrics could
be used to define the loss function.

6.2 Reinforcement Learning based Registration

We also project that reinforcement learning will also be more commonly used
for medical image registration in the next few years because it is very intuitive
and can mimic the manner in which physicians perform registration. It should be
noted that there are some unique challenges associated with deep learning based
medical image registration: including the dimensionality of the action space in the
deformable registration case. However, we believe that such limitations are sur-
mountable because there is already one proposed method that uses reinforcement
learning based registration with a deformable transformation model [64].



24 Haskins et al.

6.3 Raw Imaging Domain Registration

This article has focused on surveying methods performing registration using re-
constructed images. However, we speculate that it is possible to incorporate re-
construction into an end-to-end deep learning based registration pipeline. In 2016,
Wang [130] postulated that deep neural networks could be used to perform image
reconstruction. Further, several works [138, 144, 101] recently demonstrated the
ability of deep learning to map data points in the raw data domain to the re-
constructed image domain. Therefore, it is reasonable to expect that registration
pipelines that take raw data as input and output registered, reconstructed images
can be developed within the next few years.

7 Conclusion

In this article, the recent works that use deep learning to perform medical image
registration have been examined. As each application has its own unique chal-
lenges, the creation of the deep learning based frameworks must be carefully de-
signed. Most deep learning based medical image registration applications share
similar challenges (e.g. lack of a large database, the difficulty associated with ro-
bustly labeling medical images). Recent successes have demonstrated the impact
of the application of deep learning to medical image registration. This trend can
be observed across medical imaging applications. Many future exciting works are
sure to build on the recent progress that has been outlined in this paper.
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